PXIe-5667 (3.6 GHz)

Vector Signal Analyzer

These specifications apply to the PXIe-5667 (3.6 GHz) Vector Signal Analyzer.

The PXIe-5667 (3.6 GHz) comprises the following modules:

- PXIe-5603 RF Signal Downconverter
- PXIe-5622 IF Digitizer
- PXIe-5653 RF Analog Signal Generator
- PXIe-5693 RF Preselector Module
- PXIe-5694 IF Conditioning Module

There is no physical device named "PXIe-5667".

Contents

Definitions
Conditions
Frequency
Frequency Range
Bandwidth
PXIe-5694 Analog IF Filters5
Frequency Reference
Spectral Purity7
Residual FM (RMS) at 800 MHz
PXIe-5693 Preselector Filters
Notch Filters9
Amplitude10
Amplitude Range
Average Noise Level
Noise Figure11
Absolute Amplitude Accuracy
IF Amplitude Response
IF Phase Linearity (Deviation from Linear Phase)
Phase Synchronous Paths14
Spurious Responses
Non-Input Related (Residual) Spurs
RF Input Port Emissions Level
Image Rejection
IF Rejection

Linearity1	5
Third-Order Intermodulation Distortion 1	15
Second Harmonic Intercept Points1	6
Gain Compression1	17
Dynamic Range1	8
Measurement Speed	
Input and Output Characteristics	
PXIe-5693 RF IN Front Panel Connector2	
PXIe-5693 EXT FILTER IN/OUT2	21
PXIe-5603 LO IN and LO OUT	
PXIe-5694 REF/LO IN	
PXIe-5694 REF OUT	
PXIe-5694 LO OUT2	
Physical Characteristics	24
Power Requirements	
Physical Dimensions	24
Environment	25
Operating Environment	25
Storage Environment	
Shock and Vibration	26
Compliance and Certifications	26
Safety	26
Electromagnetic Compatibility	26
CE Compliance	27
Online Product Certification	27
Environmental Management2	27

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

The following characteristic specifications describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- *Typical* specifications describe the performance met by a majority of models.
- *Typical-95* specifications describe the performance met by 95% ($\approx 2\sigma$) of models with a 95% confidence.
- *Nominal* specifications describe an attribute that is based on design, conformance testing, or supplemental testing.

Specifications are Warranted unless otherwise noted.

Conditions

Warranted specifications are valid under the following conditions unless otherwise noted.

- 30 minute warm-up time.
- Calibration cycle is maintained.
- Chassis fan speed is set to High. NI recommends using slot blockers and EMC filler panels in empty module slots to minimize temperature drift.
- The PXIe-5653 onboard 100 MHz clock is used as the Reference Clock for the PXIe-5622.
- The PXIe-5653 REF OUT (10 MHz) connector is connected to the PXIe-5694 REF IN connector.
- The PXIe-5653 and the chassis are locked to the same reference, or the PXIe-5653 onboard 10 MHz clock is used as the Reference Clock for the chassis reference input.
- The PXIe-5622 module is revision C or later.
- Modules are connected with NI cables as shown in the *NI 5667 (3.6 GHz) Spectrum Monitoring Receiver Getting Started Guide.*
- NI-RFSA instrument driver is used.
- Self-calibration is performed after instrument temperature is stable.
- IF output power is set to the default value of -2 dBm.

Frequency

Frequency Range

Table 1. PXIe-5667 (3.6 GHz) Frequency Range (Nominal)

Path	Input Frequency
Low-frequency bypass path (DC-coupled)	20 Hz to 30 MHz
Low-frequency bypass path (AC-coupled)	10 MHz to 30 MHz
Preselector filter path	20 MHz to 3.6 GHz
External filter path	87 MHz to 3 GHz

Tuning resolution¹, set by the LO source 533 nHz, nominal

¹ *Tuning resolution* refers to the digital downconversion (DDC) tuning resolution of the PXIe-5622 IF Digitizer.

Bandwidth

Equalized bandwidth ²	
Standard configuration	25 MHz, typical
Optional configuration	50 MHz, typical
3 dB resolution bandwidth	Fully adjustable
Bandwidth range	
Standard configuration	<1 Hz to 25 MHz, typical
Optional configuration	<1 Hz to 50 MHz, typical

Window Function	60 dB : 6 dB Ratio
4-term Blackman-Harris	2.5
7-term Blackman Harris	4.1
Uniform	1.57
Hanning	1.94
Hamming	2.13
Exact Blackman	2.52
Flat Top	2.0
Low Side Lobe	2.78

Table 2. FFT Window Shape Factor

² Self-calibration is performed using the NI-RFSA instrument driver. Equalization is performed by digital filters in the digitizer. Equalization applies only to the PXIe-5694 IF signal conditioning bypass path, which is valid for instantaneous bandwidths greater than 20 MHz.

PXIe-5694 Analog IF Filters

Instantaneous Bandwidth ³	PXIe-5694 IF Conditioning Filter Path	Minimum 3 dB Bandwidth	Final IF Center Frequency	Filter Technology ⁴
>20 MHz to 50 MHz	IF Bypass	50 MHz ⁵	187.5 MHz	LC
>5 MHz to 20 MHz	20 MHz	20 MHz	193.6 MHz	LC
>1.4 MHz to 5 MHz	5 MHz	5 MHz	193.6 MHz or 21.4 MHz	LC
>400 kHz to 1.4 MHz	1.4 MHz	1.4 MHz	193.6 MHz or 21.4 MHz	SAW
≤400 kHz ⁶	400 kHz	400 kHz	193.6 MHz	SAW
>30 kHz to 400 kHz ⁷	400 kHz	400 kHz	21.4 MHz	SAW
≤30 kHz ⁷	30 kHz	30 kHz	21.4 MHz	Quartz crystal

 Table 3. PXIe-5694 Analog IF Filter Configurations (Typical)

Frequency Reference⁸

All values given are typical unless otherwise stated.

nternal frequency reference				
10 MHz				
$\pm 50 \times 10^{-9}$, (15 °C to 35 °C)				
$\pm 50 \times 10^{-9}$				
$\pm 10 \times 10^{-9}$, maximum				

³ Instantaneous bandwidth is specified with the Device Instantaneous Bandwidth property.

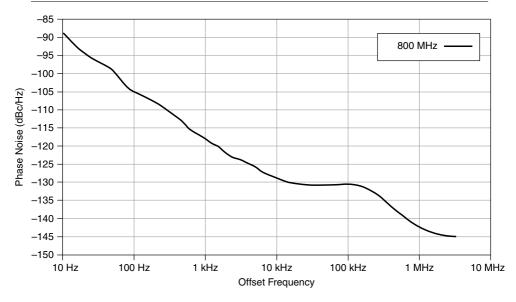
⁴ LC refers to discrete component filters, and SAW refers to surface acoustic wave filters.

⁵ The bandwidth is set by the PXIe-5622 digitizer.

⁶ The PXIe-5694 IF conditioning downconversion is disabled.

⁷ The PXIe-5694 IF conditioning downconversion is enabled.

⁸ The PXIe-5653 reference oscillator determines these values.


Aging	
Per day	$\pm 0.5 \times 10^{-9}$, after 30 days
Per year	$\pm 100 \times 10^{-9},$ after 30 days
Accuracy	Initial calibration accuracy ± aging ± temperature stability
xternal frequency reference input (REF	IN)
Frequency	5 MHz to 100 MHz in 1 MHz steps
Lock range	$\pm 0.2 imes 10^{-6}$
Amplitude	$\begin{array}{l} 0.5 \; V_{pk\text{-}pk} \; \text{to} \; 2.0 \; V_{pk\text{-}pk} \; \text{into} \; 50 \; \Omega \\ (\geq \! 1 \; V_{pk\text{-}pk} \; \text{recommended}) \end{array}$
Absolute maximum amplitude	5 V _{pk-pk}
Input impedance	50 Ω , nominal
Coupling	AC coupled
Connector	SMA
0 MHz reference output (REF OUT (10	MHz))
Accuracy	10 MHz \times Frequency reference accuracy
Amplitude	
Maximum	1.5 V_{pk-pk} into 50 Ω
Typical	$1.0 V_{pk-pk}$ into 50 Ω
Coupling	AC coupled
Connector	SMA
00 MHz reference output (REF OUT (10	00 MHz))
Accuracy	100 MHz × Frequency reference accuracy
Amplitude	
Maximum	$1.5 V_{pk-pk}$ into 50Ω
Typical	1.0 V_{pk-pk} into 50 Ω
Coupling	AC coupled
Connector	SMA

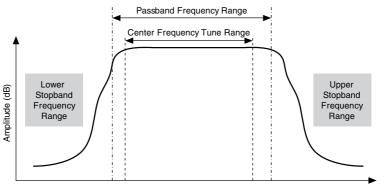
Spectral Purity

0#	Single Sideband Phase Noise (dBc/Hz)		
Offset Frequency	23 °C ± 5 °C	0 °C to 55 °C	
10 Hz	N/A	-80, nominal	
100 Hz	-100	-98	
1 kHz	-114	-112	
10 kHz	-126	-124	
100 kHz	-128	-127	
1 MHz	-140	-140	

Table 4. PXIe-5667 Single Sideband (SSB) Phase Noise (Typical)9

Figure 1. PXIe-5667 (3.6 GHz) Phase Noise at 800 MHz Center Frequency (Nominal)

⁹ This specification is based on an RF center frequency of 800 MHz that uses the internal reference of the PXIe-5653. This specification is valid when the PXIe-5667 IF filter bandwidth is set to 5 MHz, the PXIe-5622 Sample Clock is locked to the PXIe-5653 100 MHz reference output, and the PXIe-5653 LO YIG main coil drive is set to normal.


Residual FM (RMS) at 800 MHz

10 Hz to 10 kHz

<0.5 Hz, typical

PXIe-5693 Preselector Filters

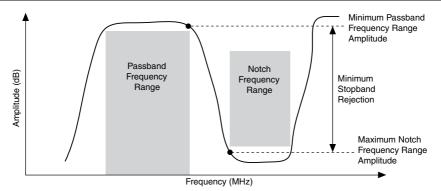
Figure 2. PXIe-5693 Preselector Filter Definition

Frequency (MHz)

Preselector Filter Band	Center Frequency Tune Range ¹⁰ (MHz)	Passband Frequency Range ¹¹ (MHz)	Lower Stopband Frequency Range (MHz)	Upper Stopband Frequency Range (MHz)	Stopband Rejection (dB)
1	20 to 34	19 to 35	<14	>42	>20
2	>34 to 60	33 to 61	<27	>70	>20
3	>60 to 100	59 to 110	<49	>128	>20
4	>100 to 160	90 to 170	<75	>185	>20
5	>160 to 225	140 to 245	<115	>285	>20
6	>225 to 350	205 to 370	<170	>420	>20
7	>350 to 555	330 to 575	<280	>660	>20

Table 5. PXIe-5693 Preselector Filters Characteristics (Nominal)

¹⁰ The PXIe-5693 preselector filter band selection is based on the center frequency tune range. The lowest frequency preselector band is selected at the band-crossing frequencies.


¹¹ Passband Frequency Range is the calibrated range of the preselector filter band.

Preselector Filter Band	Center Frequency Tune Range ¹⁰ (MHz)	Passband Frequency Range ¹¹ (MHz)	Lower Stopband Frequency Range (MHz)	Upper Stopband Frequency Range (MHz)	Stopband Rejection (dB)
8	>555 to 950	530 to 975	<450	>1,120	>20
9	>950 to 1,560	910 to 1,640	<775	>1,920	>20
10	>1,560 to 2,000	1,520 to 2,040	<1,350	>2,320	>20
11	>2,000 to 2,500	1,960 to 2,540	<1,700	>2,860	>20
12	>2,500 to 3,000	2,460 to 3,040	<2,140	>3,460	>20
13	>3,000 to 3,600	2,960 to 3,840	<2,650	>4,350	>20

Table 5. PXIe-5693 Preselector Filters Characteristics (Nominal) (Continued)

Notch Filters

¹⁰ The PXIe-5693 preselector filter band selection is based on the center frequency tune range. The lowest frequency preselector band is selected at the band-crossing frequencies.

¹¹ Passband Frequency Range is the calibrated range of the preselector filter band.

Notch Filter Band	Passband Frequency Range (MHz)	Notch Frequency Range (MHz)	Notch Filter Rejection (dB) ¹²	Preselector Filter Band ¹²
N1	32 to 44	55 to 80	>38	2
N2	60 to 77	88 to 108	>25	3
N3	90 to 110	50 to 80	>40	3
N4	120 to 166	88 to 108	>23	4

Table 6. PXIe-5693 Notch Filter Characteristics (Nominal)

Amplitude

Amplitude Range

Amplitude range	
Preselector path	Average noise level to +10 dBm, nominal
Low-frequency bypass path ¹³	Average noise level to +30 dBm, nominal
External filter path	Average noise level to +10 dBm, nominal

Average Noise Level

 Table 7. Average Noise Level for Preselector and Low-Frequency Bypass Paths (Typical)¹⁴

Center Frequency	IF Conditioning Bypass Path (dBm/Hz)		IF Conditioning, Enabled, and I (dBn	Disabled Paths
	23 °C ± 5 °C	0 °C to 55 °C	23 °C ± 5 °C	0 °C to 55 °C
20 Hz to 10 kHz ¹⁵	-70	-70	-70	-70
>10 kHz to 1 MHz ¹⁵	-95	-95	-95	-95

¹² Notch filter bands are a cascade of a preselector filter and a notch filter. Stopband rejection specifications for the preselector filter band apply in the notch filter bands.

 $^{^{13}}$ The maximum amplitude range is limited by the PXIe-5603.

¹⁴ This specification is based on the termination of the PXIe-5693 RF IN connector and a reference level of ≤-50 dBm with ≥10 RMSaverages.

¹⁵ This specification is valid when the PXIe-5693 low-frequency bypass path is enabled on the DC coupled path and the IF filter bandwidth is set to 300 kHz.

Center Frequency	IF Conditioning Bypass Path (dBm/Hz)		Enabled, and I	Downconversion Disabled Paths n/Hz)
	23 °C ± 5 °C	0 °C to 55 °C	23 °C ± 5 °C	0 °C to 55 °C
>1 MHz to 10 MHz ¹⁵	-125	-123	-125	-123
>10 MHz to 30 MHz ¹⁶	-130	-128	-130	-128
>20 MHz to 87 MHz ¹⁷	-157	-155	-160	-159
>87 MHz to 1.5 GHz ¹⁷	-161	-159	-162	-161
>1.5 GHz to 3.6 GHz ¹⁷	-160	-158	-161	-160

 Table 7. Average Noise Level for Preselector and Low-Frequency Bypass Paths (Typical)¹⁴ (Continued)

Noise Figure

Center Frequency	IF Conditioning Bypass Path (dB)				
	23 °C ± 5 °C	0 °C to 55 °C	23 °C ± 5 °C	0 °C to 55 °C	
>20 MHz to 87 MHz	17	19	14	15	
>87 MHz to 1.5 GHz	13	15	12	13	
>1.5 GHz to 3.6 GHz	14	16	13	14	

Table 8. Noise Figure for Preselector Paths (Nominal)¹⁸

¹⁶ This specification is valid when the PXIe-5693 low-frequency bypass path is enabled on the AC coupled path and the IF filter bandwidth is set to 300 kHz.

¹⁷ This specification is valid when the PXIe-5693 preselector filter path is enabled.

¹⁸ This specification is computed from the Average Noise Level measurement. Noise Figure equals Average Noise Level + 174 dB.

Center Frequency	IF Conditioning Bypass Path (dB)		•	Downconversion abled Paths (dB)
	23 °C ± 5 °C	0 °C to 55 °C	23 °C ± 5 °C	0 °C to 55 °C
20 Hz to 10 MHz ¹⁹	104	104	104	104
>10 kHz to 1 MHz ¹⁹	79	79	79	79
>1 MHz to 10 MHz ¹⁹	49	51	49	51
>10 MHz to 30 MHz ²⁰	44	46	44	46

Table 9. Noise Figure for Low-Frequency Bypass Paths (Nominal)¹⁸

Absolute Amplitude Accuracy

Table 10. Absolute Amplitude Accuracy for the Preselector Path²¹

Contex Exemuterou	Absolute Amplitude Accuracy (dB)	
Center Frequency	23 °C ± 5 °C	0 °C to 55 °C
20 MHz to 40 MHz	±2.1	±2.7
	±1.5, typical	±1.3, typical
>40 MHz to 2.5 GHz	±1.3	±1.7
	±0.7, typical	±1.0, typical
>2.5 GHz to 3.6 GHz	± 1.6	±1.9
	±0.8, typical	±1.2, typical

IF path switching uncertainty²²

±0.08 dB, typical

¹⁹ This specification is valid when the PXIe-5693 low-frequency bypass path is enabled on the DC coupled path and the IF filter bandwidth is set to 300 kHz.

²⁰ This specification is valid when the PXIe-5693 low-frequency bypass path is enabled on the AC coupled path and the IF filter bandwidth is set to 300 kHz.

²¹ This specification is based on a reference level of -50 dBm to -10 dBm and is valid when the IF filter bandwidth is set to 5 MHz, IF conditioning downconversion is disabled, and the signal power value is set to the reference level value. This specification is measured at the center frequency and is within ±5 °C the temperature at the last self-calibration.

²² When the IF Conditioning Downconversion Enabled property is disabled and a 5 MHz IF path is used, an amplitude error occurs between the property/attribute and all other paths and filters within the PXIe-5694. This specification is valid when the center frequency is set to 612.5 MHz.

IF Amplitude Response

PXIe-5694 IF	Measurement Bandwidth	IF Amplitude Response (dB)		
Conditioning Filter Path		Center Frequency 20 MHz to 200 MHz 23 °C ± 5 °C	Center Frequency >200 MHz to 3.6 GHz 23 °C ± 5 °C	
IF bypass	≤50 MHz	±0.5	±0.5	
	≤25 MHz	±0.25	±0.4	
	≤5 MHz	±0.1	±0.1	
20 MHz ²⁴	≤20 MHz	±0.5	±0.5	
5 MHz	≤5 MHz	±0.6	±0.6	
1.4 MHz	≤1.4 MHz	±0.4	±0.4	
400 kHz	≤400 kHz	±0.4	±0.4	
30 kHz ²⁵	≤30 kHz	±0.4	±0.4	

Table 11. PXIe-5667 IF Amplitude Response (Typical)²³

IF Phase Linearity (Deviation from Linear Phase)

PXIe-5694 IF	Measurement	Deviation from Linear Phase (degrees) (
Conditioning Filter Path	Bandwidth	Center Frequency 20 MHz to 200 MHz	Center Frequency >200 MHz to 3.6 GHz
IF bypass	≤50 MHz	±7.0	±6.0
	≤25 MHz	±1.0	±2.0
	≤5 MHz	±0.1	±0.1

Table 12. P>	XIe-5667 IF Phase	Linearity (Deviation from	Linear Phase) (Typical) ²⁶
--------------	-------------------	---------------------------	---------------------------------------

²³ The IF passband response is relative to the IF center frequency. This specification applies when self-calibration is performed with digital IF equalization enabled.

²⁴ This specification is valid when IF conditioning downconversion is disabled.

²⁵ This specification is valid when IF conditioning downconversion is enabled.

²⁶ The IF passband response is relative to the IF center frequency on the IF bypass path. This specification is based on performing self-calibration with digital IF equalization enabled. This specification has reference levels of -40 dBm to 0 dBm.

Phase Synchronous Paths

IF BW for multi channel phase-coherent measurements

5 MHz, 20 MHz, 50 MHz, nominal

Spurious Responses

Non-Input Related (Residual) Spurs²⁷

Non-input related (residual) spurs at 23 °C =	±5°C	
Center frequency 20 MHz to 200 MHz	-110 dBm, typical	
Center frequency >200 MHz to 3.6 GHz	-115 dBm, typical	
RF Input Port Emissions I	_evel ²⁸	
RF input port emissions level at 23 °C \pm 5 °C with a center frequency of >20 MHz to 3.6 GHz	-105 dBm, typical	
Image Rejection ²⁹		
Image rejection at 23 $^{\circ}C \pm 5 ^{\circ}C$		
Center frequency >20 MHz to 1 GHz	94 dBc, typical	
Center frequency >1 GHz to 3.6 GHz	93 dBc, typical	

²⁷ This specification has a reference level of -50 dBm and is valid when the device instantaneous bandwidth is set to >20 MHz when the FFT width is set to <24 MHz, when the device instantaneous bandwidth is set to ≤20 MHz when the FFT width is set to <12.8 MHz, and when the PXIe-5693 preselector filter path is used.</p>

²⁸ This specification applies under normal operations and not during system self-calibration.

²⁹ This specification is based on a 0 dBm input signal level with a reference level of 0 dBm and includes images from all conversion stages. This specification is valid when the PXIe-5693 preselector filter path is used.

IF Rejection³⁰

IF rejection (dBc) for the ce	enter frequency at 100 MHz to 3.6 GHz
IF1	59, typical
IF2	70, typical
IF3	92, typical
IF4	90, typical

Linearity

Third-Order Intermodulation Distortion

Table 13. Third-Order Intermodulation Distortion for the PXIe-5693 Preselector Path In-
Band (Typical)

Center Frequency	Third-Order Intercept Point (dBm)			
	23 °C ± 5 °C		0 °C to	₀ 55 °C
	Preamp Disabled ³¹	Preamp Enabled ³²	Preamp Disabled ³¹	Premap Enabled ³²
>80 MHz to 1 GHz	+18	-3	+18	-4
>1 GHz to 3 GHz	+21	0	+20	-1
>3 GHz to 3.6 GHz	+19	+1	+19	0

 $^{^{30}\,}$ IF rejection is the suppression of an input signal at the IF frequency when the RF signal analyzer is tuned elsewhere. This specification is based on a 0 dBm input signal level with a reference level of 0 dBm, and is valid when the PXIe-5693 preselector filter path is used.

³¹ This specification is based on two -30 dBm tones spaced 700 kHz apart. This specification is valid when both tones are within the PXIe-5693 preselector bandwidth with a reference level of -5 dBm and the IF filter bandwidth is set to 5 MHz.

³² This specification is based on two -30 dBm tones spaced 700 kHz apart. This specification is valid when both tones are within the PXIe-5693 preselector bandwidth with a reference level of -25 dBm and the IF filter bandwidth is set to 5 MHz.

Table 14. Third-Order Intermodulation Distortion for the PXIe-5693 Preselector Path
Out-of-Band (Typical)

Center Frequency	Third-Order Intercept Point (dBm)			
	23 °C ± 5 °C		0 °C to	55 °C
	Preamp Disabled ³³	Preamp Enabled ³⁴	Preamp Disabled ³³	Preamp Enabled ³⁴
>20 MHz to 1 GHz	+35	+16	+35	+15
>1 GHz to 3 GHz	+33	+10	+33	+9
>3 GHz to 3.6 GHz	+40	+27	+40	+26

Second Harmonic Intercept Points

Source Frequency	Second Harmonic Intercept Point (dBm)			
	23 °C ± 5 °C		0 °C to 55 °C	
	Preamp Disabled ³⁵	Preamp Enabled ³⁶	Preamp Disabled ³⁵	Preamp Enabled ³⁶
>20 MHz to 250 MHz	+75	+65	+75	+65
>250 MHz to 1.8 GHz	+82	+75	+82	+75

Table 15. Second Harmonic Intercept Points for the Preselector Path (Typical)

³³ This specification is based on two -10 dBm tones placed outside the PXIe-5693 preselector bandwidth such that the intermodulation distortion product occurs in band. This specification has a reference level of -5 dBm and is valid when the IF filter bandwidth is set to 5 MHz.

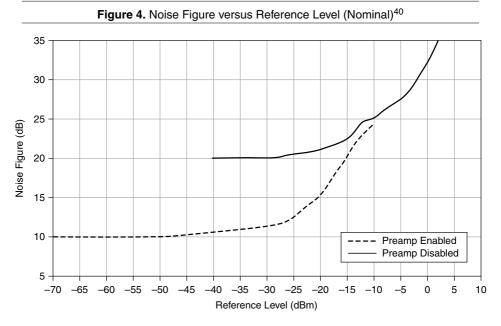
³⁴ This specification is based on two -30 dBm tones placed outside the PXIe-5693 preselector bandwidth such that the intermodulation distortion product occurs in band. This specification has a reference level of -25 dBm and is valid when the IF filter bandwidth is set to 5 MHz.

³⁵ This specification is based on a -5 dBm tone at the RF IN connector with a reference level of -5 dBm. This specification is valid when the IF filter bandwidth is set to 5 MHz and the receiver tune frequency is set to twice the source frequency.

³⁶ This specification is based on a -35 dBm tone at the RF IN connector with a reference level of -25 dBm. This specification is valid when the IF filter bandwidth is set to 5 MHz and the receiver tune frequency is set to twice the source frequency.

Gain Compression

Center Frequency	Input Power at <1 dB Gain Compression (dBm)			dBm)
	23 °C ± 5 °C		0 °C to	55 °C
	Preamp Disabled ³⁷	Preamp Enabled ³⁸	Preamp Disabled ³⁷	Preamp Enable ³⁸
>20 MHz to 2.5 GHz	+8	-17	+7	-18
>2.5 GHz to 3.6 GHz	+6	-15	+6	-16


Table 16. PXIe-5693 Gain Compression Preselector	Path	(Typical)
--	------	-----------

³⁷ This measurement uses the two-tone desensitization method³⁹ with input referred at the power level, a reference level of 0 dBm, and the IF filter bandwidth set to 110 kHz. The tone frequency spacing is >1.5 times the instantaneous bandwidth.

³⁸ This measurement uses the two-tone desensitization method³⁹ with input referred at the power level, a reference level of -30 dBm, and the IF filter bandwidth set to 110 kHz. The tone frequency spacing is >1.5 times the instantaneous bandwidth.

³⁹ The two-tone desensitization method places two tones within the PXIe-5693 preselector filter bandwidth with a tone spacing of 5 MHz. The lower amplitude tone power is set to -30 dBm. The amplitude variation of the lower amplitude cannot be >1 dB, because higher amplitude tone power is increased from low power to the input power at 1 dB of the *Gain Compression* specification.

Dynamic Range

 $^{^{\}rm 40}~$ The center frequency is set to 1 GHz.

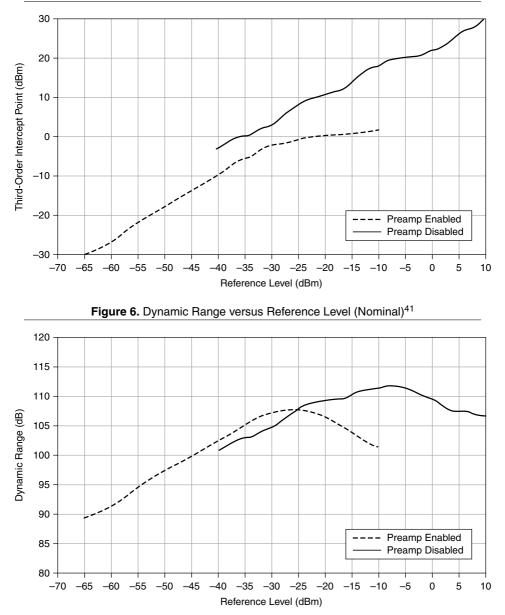


Figure 5. In-Band Third-Order Intercept (TOI) versus Reference Level (Nominal)⁴⁰

⁴¹ The center frequency is set to 1 GHz. Dynamic range is defined by the following equation: Dynamic Range = 2/3 × (TOI + 174 - Noise Figure).

Measurement Speed

Frequency Range	Instantaneous Bandwidth (MHz)	RBW (kHz)	Average Scan Rate (GHz/sec)
>20 MHz to 3.6 GHz	50	20	13
>20 MHz to 3.6 GHz	50	100	17
>20 MHz to 3.6 GHz	50	500	17

Table 17. Scan Rate of NI-RFSA Read Power Spectrum Mode (Nominal)42

Table 18. Scan Rate of NI-RFSA RF List Mode (Nominal)43

Frequency Range	Instantaneous Bandwidth (MHz)	RBW (kHz)	Average Scan Rate (GHz/sec)
>20 MHz to 3.6 GHz	50	20	30
>20 MHz to 3.6 GHz	50	100	32
>20 MHz to 3.6 GHz	50	500	32

 Table 19.
 RF Configuration List Mode Tuning Time (Nominal)

Step Size	Tuning Time (ms) ⁴⁴		
	Fast Configuration	Normal Configuration	
50 MHz	1.2	7.1	
3.5 GHz	17.1	20.1	

⁴² This specification is based on using an PXIe-8133 controller and PXIe-1075 chassis. This specification is valid when the LO YIG main coil drive is set to fast and the FFT window type is set to 4-term blackman-harris.

⁴³ This specification is based on acquiring I/Q data and converting it to power spectrum using the Spectral Measurements Toolkit and using an PXIe-8133 controller and PXIe-1075 chassis. This specification is valid when the frequency settling is set to 1.2 msec, the LO YIG main coil drive is set to fast, and the FFT window type is set to 4-term blackman-harris.

⁴⁴ *Tuning time* refers to tuning within a single band (i.e. 20 MHz to 3.6 GHz).

Input and Output Characteristics

PXIe-5693 RF IN Front Panel Connector

Connector	SMA female
Reference impedance	50 Ω
Maximum safe input power	
Preselector path	+30 dBm
Low-frequency bypass path, PXIe-5603, 0 dB RF attenuation	+20 dBm
Low-frequency bypass path, PXIe-5603, \geq 10 dB RF attenuation	+30 dBm
Safe DC input voltage	
Preselector Path	
Minimum	-25 V
Maximum	25 V
AC-coupled low-frequency bypass path	
Minimum	-25 V
Maximum	25 V
DC-coupled low-frequency bypass path	
Minimum	0 V
Maximum	0 V
VSWR	
Low-frequency bypass	<1.5 : 1, nominal
Preselector path	
20 MHz to 950 MHz	<2.0 : 1, nominal
>950 MHz to 2 GHz	<2.6 : 1, nominal
>2 GHz to 3 GHz	<1.9 : 1, nominal

PXIe-5693 EXT FILTER IN/OUT

Connector	SMA female
Reference impedance	50 Ω

Safe DC input voltage	
Minimum	-25 V
Maximum	25 V
VSWR	<2.0 : 1, nominal

PXIe-5603 LO IN and LO OUT

Connector	SMA female
Reference impedance	50 Ω
Coupling	AC
LO IN maximum safe power level	+15 dBm
LO IN safe DC input voltage	
Minimum	-25 V
Maximum	25 V
LO OUT maximum safe power level	+15 dBm
LO OUT safe DC input voltage	
Minimum	0 V
Maximum	0 V
LO frequency	
LO1	4.6 GHz to 8.3 GHz
LO2	4.0 GHz
LO3	800 MHz
LO output level	
LO1	+5 dBm to +12 dBm, nominal (varies with frequency)
LO2	+9 dBm, nominal
LO3	+9 dBm, nominal

PXIe-5694 REF/LO IN

Connector	SMA female	
Reference impedance	50 Ω	
Frequency		
REF	10 MHz, ±5 ppm	
LO	215 MHz, nominal	

Safe DC input voltage	
Minimum	-12 V
Maximum	12 V
VSWR (10 MHz, 215 MHz)	<2:1, nominal
Operating power	
REF	$10 \text{ dBm} \pm 1 \text{ dBm}$
LO	$10 \text{ dBm} \pm 1 \text{ dBm}$

PXIe-5694 REF OUT

Connector	SMA female
Reference impedance	50 Ω
Frequency	10 MHz
Safe DC input voltage	
Minimum	-12 V
Maximum	12 V
VSWR	<2:1, nominal
Output power	$10 \text{ dBm} \pm 1 \text{ dBm}$

PXIe-5694 LO OUT

Connector	SMA female
Reference impedance	50 Ω
Frequency	215 MHz
Safe DC input voltage	
Minimum	-12 V
Maximum	12 V
VSWR	<2:1, nominal
Output power	$10 \text{ dBm} \pm 1 \text{ dBm}$

Power Requirements

Module	Power Requirements (Voltages ± 5%)	
	From +3.3 VDC	From +12 VDC
PXIe-5693	1.30 A (4.29 W)	0.85 A (10.2 W)
PXIe-5653	1.10 A (3.63 W)	4.00 A (48.0 W)
PXIe-5603	1.70 A (5.61 W)	1.80 A (21.6 W)
PXIe-5694	1.31 A (4.32 W)	1.40 A (16.8 W)
PXIe-5622	1.75 A (5.78 W)	2.25 A (27.0 W)

Table 20. PXIe-5667 Power Requirements (Nominal)

Physical Dimensions

PXIe-5693	
Dimensions	3U, one slot, PXI Express module 21.6 cm × 2.0 cm × 13.0 cm (8.5 in. × 0.8 in. × 5.1 in.)
Weight	465 g (16.4 oz)
PXIe-5653	
Dimensions	3U, two slot, PXI Express module, 21.6 cm × 4.0 cm × 13.0 cm (8.5 in. × 1.6 in. × 5.1 in.)
Weight	1,076 g (37.8 oz)
PXIe-5603	
Dimensions	3U, two slot, PXI Express module, 21.6 cm × 4.0 cm × 13.0 cm (8.5 in. × 1.6 in. × 5.1 in.)
Weight	907 g (32.0 oz)

PXIe-5694

Dimensions	3U, one slot, PXI Express module,
	$21.6 \text{ cm} \times 2.0 \text{ cm} \times 13.0 \text{ cm}$
	$(8.5 \text{ in.} \times 0.8 \text{ in.} \times 5.1 \text{ in.})$
Weight	465 g (16.4 oz)
KIe-5622	
Dimensions	3U, one slot, PXI Express module
	21.6 cm × 2.0 cm × 13.0 cm
	$(8.5 \text{ in.} \times 0.8 \text{ in.} \times 5.1 \text{ in.})$
Weight	376 g (13.3 oz)

Environment

Maximum altitude	2,000 m (800 mbar) (at 25 °C ambient temperature)
Pollution Degree	2

Indoor use only.

Operating Environment

Ambient temperature range	0 °C to 55 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2. Meets MIL-PRF-28800F Class 3 low temperature limit and MIL-PRF-28800F Class 2 high temperature limit.)
Relative humidity range	10% to 90%, noncondensing (Tested in accordance with IEC 60068-2-56.)

Storage Environment

Ambient temperature range	-40 °C to 71 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2. Meets MIL-PRF-28800F Class 3 limits.)
Relative humidity range	5% to 95%, noncondensing (Tested in accordance with IEC 60068-2-56.)

Shock and Vibration

Operating shock	30 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC 60068-2-27. Meets MIL-PRF-28800F Class 2 limits.)
Random vibration	
Operating	5 Hz to 500 Hz, 0.3 g_{rms} (Tested in accordance with IEC 60068-2-64.)
Nonoperating	5 Hz to 500 Hz, 2.4 g_{rms} (Tested in accordance with IEC 60068-2-64. Test profile exceeds the requirements of MIL-PRF-28800F, Class 3.)

Compliance and Certifications

Safety

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Note For UL and other safety certifications, refer to the product label or the *Online Product Certification* section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- EN 55022 (CISPR 22): Class A emissions
- EN 55024 (CISPR 24): Immunity
- AS/NZS CISPR 11: Group 1, Class A emissions
- AS/NZS CISPR 22: Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia, and New Zealand (per CISPR 11), Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations, certifications, and additional information, refer to the *Online Product Certification* section.

CE Compliance $C \in$

This product meets the essential requirements of applicable European Directives, as follows:

- 2014/35/EU; Low-Voltage Directive (safety)
- 2014/30/EU; Electromagnetic Compatibility Directive (EMC)

Online Product Certification

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit *ni.com/ certification*, search by model number or product line, and click the appropriate link in the Certification column.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the *Minimize Our Environmental Impact* web page at *ni.com/environment*. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit *ni.com/environment/weee*.

电子信息产品污染控制管理办法(中国 RoHS)

 中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物 质指令(RoHS)。关于 National Instruments 中国 RoHS 合规性信息,请登录 ni.com/environment/rohs_china。(For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

Information is subject to change without notice. Refer to the *NI Trademarks and Logo Guidelines* at ni.com/trademarks for information on NI trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering NI products/technology, refer to the appropriate location: **Help**»**Patents** in your software, the patents.txt file on your media, or the *National Instruments Patent Notice* at ni.com/patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the *Export Compliance Information* at ni.com/legal/export-compliance for the NI global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-14, DFAR 252.227-7014, and DFAR 252.227-7015.

© 2012-2018 National Instruments. All rights reserved.